Linear Kernel for Planar Connected Dominating Set

نویسندگان

  • Daniel Lokshtanov
  • Matthias Mnich
  • Saket Saurabh
چکیده

We provide polynomial time data reduction rules for Connected Dominating Set in planar graphs and analyze these to obtain a linear kernel for the planar Connected Dominating Set problem. To obtain the desired kernel we introduce a method that we call reduce or refine. Our kernelization algorithm analyzes the input graph and either finds an appropriate reduction rule that can be applied, or zooms in on a region of the graph which is more amenable to reduction. We find this method of independent interest and believe that it will be useful to obtain linear kernels for other problems on planar graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A linear kernel for planar total dominating set

A total dominating set of a graph G = (V,E) is a subset D ⊆ V such that every vertex in V is adjacent to some vertex in D. Finding a total dominating set of minimum size is NPcomplete on planar graphs and W [2]-complete on general graphs when parameterized by the solution size. By the meta-theorem of Bodlaender et al. [FOCS 2009], it follows that there exists a linear kernel for Total Dominatin...

متن کامل

Linear-Time Computation of a Linear Problem Kernel for Dominating Set on Planar Graphs

We present a linear-time kernelization algorithm that transforms a given planar graph G with domination number γ(G) into a planar graph G′ of size O(γ(G)) with γ(G) = γ(G′). In addition, a minimum dominating set for G can be inferred from a minimum dominating set for G′. In terms of parameterized algorithmics, this implies a linear-size problem kernel for the NP-hard Dominating Set problem on p...

متن کامل

A 9k Kernel for Nonseparating Independent Set in Planar Graphs

We study kernelization (a kind of efficient preprocessing) for NP-hard problems on planar graphs. Our main result is a kernel of size at most 9k vertices for the Planar Maximum Nonseparating Independent Set problem. A direct consequence of this result is that Planar Connected Vertex Cover has no kernel with at most (9/8 − ǫ)k vertices, for any ǫ > 0, assuming P 6= NP. We also show a very simple...

متن کامل

Efficient Data Reduction for DOMINATING SET: A Linear Problem Kernel for the Planar Case

Dealing with the NP-complete Dominating Set problem on undirected graphs, we demonstrate the power of data reduction by preprocessing from a theoretical as well as a practical side. In particular, we prove that Dominating Set on planar graphs has a so-called problem kernel of linear size, achieved by two simple and easy to implement reduction rules. This answers an open question from previous w...

متن کامل

A linear kernel for planar red-blue dominating set

In the Red-Blue Dominating Set problem, we are given a bipartite graph G = (VB ∪ VR, E) and an integer k, and asked whether G has a subset D ⊆ VB of at most k ‘blue’ vertices such that each ‘red’ vertex from VR is adjacent to a vertex in D. We provide the first explicit linear kernel for this problem on planar graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009